Unit 1 Project Wrap-Up

The Art of Mathematics

- Select a piece of artwork, a photo, or an image that clearly illustrates at least two different types of functions you have encountered in this unit, such as linear, absolute value, quadratic, radical, and polynomial.
- Determine function equations that model at least two aspects or portions of the image.
- Justify your choice of equations by superimposing them on the image.
- Display your piece of art. You may wish to use a poster, a PowerPoint presentation, a brochure, or some other format of your choice.
You may wish to create a class bulletin board to display your artwork.

Cumulative Review, Chapters 1-3

Chapter 1 Function Transformations

1. Given the graph of the function $y=f(x)$, sketch the graph of each transformation.

a) $y+2=f(x-3)$
b) $y+1=-f(x)$
c) $y=f(3 x+6)$
d) $y=3 f(-x)$
2. Write the equation for the translated graph, $g(x)$, in the form $y-k=f(x-h)$.

3. Describe the combination of transformations that must be applied to the function $f(x)$ to obtain the transformed function $g(x)$.
a) $y=f(x)$ and $g(x)=f(x+1)-5$
b) $f(x)=x^{2}$ and $g(x)=-3(x-2)^{2}$
c) $f(x)=|x|$ and $g(x)=|-x+1|+3$
4. The graph of $y=f(x)$ is transformed as indicated. State the coordinates of the image point of $(6,9)$ on the transformed graph.
a) $h(x)=f(x-3)+1$
b) $i(x)=-2 f(x)$
c) $j(x)=f(-3 x)$
5. The x-intercepts of the graph of $y=f(x)$ are -4 and 6 . The y-intercept is -3 . Determine the new x-intercepts and y-intercept for each of the following transformations of $f(x)$.
a) $y=f(3 x)$
b) $y=-2 f(x)$
6. Consider the graph of $y=|x|+4$.

a) Does this graph represent a function?
b) Sketch the graph of the inverse of $y=|x|+4$.
c) Is the inverse of $y=|x|+4$ a function? If not, restrict the domain of $y=|x|+4$ so that its inverse is a function.

Chapter 2 Radical Functions

7. The graph of the function $f(x)=\sqrt{x}$ is transformed to the graph shown. Determine the equation of the transformed graph in the form $g(x)=\sqrt{b(x-h)}-k$.

8. The graph of the function $f(x)=\sqrt{x}$ is transformed by a vertical stretch by a factor of 2 and then reflected in the y-axis and translated 1 unit to the left. State the equation of the transformed function, sketch the graph, and identify the domain and range.
9. The graph of $g(x)$ is a transformation of the graph of $f(x)$.

a) Write the equation of $g(x)$ as a horizontal stretch of $f(x)$.
b) Write the equation of $g(x)$ as a vertical stretch of $f(x)$.
c) Show that the functions in parts a) and b) are equivalent.
10. Consider the functions $f(x)=x^{2}-1$ and $g(x)=\sqrt{f(x)}$.
a) Compare the x-intercepts of the graphs of the two functions. Explain your results.
b) Compare the domains of the functions. Explain your results.
11. The radical equation $2 x=\sqrt{x+3}-5$ can be solved graphically or algebraically.
a) Ron solved the equation algebraically and obtained the solutions $x=-2.75$ and $x=-2$. Are these solutions correct? Explain.
b) Solve the equation graphically to confirm your answer to part a).
12. Consider the function $f(x)=3 \sqrt{x-4}-6$.
a) Sketch the graph of the function and determine its x-intercept.
b) Solve the equation $0=3 \sqrt{x-4}-6$.
c) Describe the relationship between the x-intercept of the graph and the solution to the equation.

Chapter 3 Polynomial Functions

13. Divide each of the following as indicated. Express your answer in the form $\frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a}$. Confirm your remainder using the remainder theorem.
a) $x^{4}+3 x+4$ divided by $x+1$
b) $x^{3}+5 x^{2}+x-9$ divided by $x+3$
14. List the possible integral zeros of the polynomial $P(x)=x^{4}-3 x^{3}-3 x^{2}+11 x-6$. Use the remainder theorem to determine the remainder for each possible value.
15. Factor fully.
a) $x^{3}-21 x+20$
b) $x^{3}+3 x^{2}-10 x-24$
c) $-x^{4}+8 x^{2}-16$
16. Determine the x-intercepts and the y-intercept of the graphs of each polynomial function. Then, sketch the graph.
a) $f(x)=-x^{3}+2 x^{2}+9 x-18$
b) $g(x)=x^{4}-2 x^{3}-3 x^{2}+4 x+4$
17. The volume of a box is represented by the function $V(x)=x^{3}+2 x^{2}-11 x-12$.
a) If the height of the box can be represented by $x+1$, determine the possible length and width by factoring the polynomial.
b) If the height of the box is 4.5 m , determine the dimensions of the box.
18. Determine the equation of the transformed function.
$f(x)=x^{3}$ is stretched vertically about the x-axis by a factor of 3 , then reflected in the y-axis, and then translated horizontally 5 units to the right.

Unit 1 Test

Multiple Choice

For \#1 to \#7, choose the best answer.

1. The graph of $f(x)$ and its transformation, $g(x)$, are shown below.

The equation of the transformed function is
A $g(x)=f\left(\frac{1}{2}(x-3)\right)+1$
B $\quad g(x)=f(2(x-3))+1$
C $g(x)=f\left(\frac{1}{2}(x+3)\right)+1$
D $g(x)=f(2(x+3))+1$
2. The graph of the function $y=f(x)$ is transformed by a reflection in the y-axis and a horizontal stretch about the y-axis by a factor of 3 . Which of the following will not change?
I the domain
II the range
III the x-intercepts
IV the y-intercept
A I only
B I and III
C II and IV
D depends on $y=f(x)$
3. Which pair of functions are not inverses of each other?
A $f(x)=5 x$ and $g(x)=\frac{x}{5}$
B $f(x)=x+3$ and $g(x)=x-3$
C $f(x)=4 x-1$ and $g(x)=\frac{1}{4} x+\frac{1}{4}$
D $f(x)=\frac{x}{2}+5$ and $g(x)=2 x-5$
4. Which function has a domain of $\{x \mid x \in R\}$ and a range of $\{y \mid y \geq-3, y \in R\}$?
A $y=|x+4|-3$
B $y=\sqrt{x+4}-3$
C $y=\sqrt{x^{2}-4}-3$
D $y=(x-4)^{3}-3$
5. If the graph of $y=\sqrt{x+3}$ is reflected in the line $y=x$, then which statement is true?
A All invariant points lie on the y-axis.
B The new graph is not a function.
C The point $(6,3)$ will become $(-3,6)$.
D The domain of the new graph is $\{x \mid x \geq 0, x \in R\}$.
6. If the graph of a polynomial function of degree 3 passes through $(2,4)$ and has x-intercepts of -2 and 3 only, the function could be

A $f(x)=x^{3}+x^{2}-8 x-12$
B $f(x)=x^{3}-x^{2}-8 x+12$
C $f(x)=x^{3}-4 x^{2}-3 x+18$
D $f(x)=x^{3}+4 x^{2}-3 x-18$
7. If $P(x)=-x^{3}-4 x^{2}+x+4$, then

A $x+1$ is a factor
B $P(0)=-1$
C the y-intercept is -4
D $x-1$ is not a factor

Numerical Response

Copy and complete the statements in \#8 to \#11.
8. When $x^{4}+k$ is divided by $x+2$, the remainder is 3 . The value of k is
9. If the range of the function $y=f(x)$ is $\{y \mid y \geq 11, y \in R\}$, then the range of the new function $g(x)=f(x+2)-3$ is
10. The graph of the function $f(x)=|x|$ is transformed so that the point (x, y) becomes ($x-2, y+3$). The equation of the transformed function is $g(x)=$
11. The root of the equation $x=\sqrt{2 x-1}+2$ is

Written Response

12. a) The graph of $y=x^{2}$ is stretched horizontally about the y-axis by a factor of $\frac{1}{2}$ and then translated horizontally 6 units to the right. Sketch the graph.
b) The graph of $y=x^{2}$ is translated horizontally 6 units to the right and then stretched horizontally about the y-axis by a factor of $\frac{1}{2}$. Sketch the graph.
c) How are the two images related? Explain.
13. Consider $f(x)=x^{2}-9$.
a) Sketch the graph of $f(x)$.
b) Determine the equation of the inverse of $f(x)$ and sketch its graph.
c) State the equation of $y=\sqrt{f(x)}$ and sketch its graph.
d) Identify and compare the domain and range of the three relations.
14. The graph of $y=f(x)$ represents one quarter of a circle. Describe the reflections of $y=f(x)$ required to produce a whole circle. State the equations required.

15. Mary and John were asked to solve the equation $2 x=\sqrt{x+1}+4$.
a) Mary chose to solve the equation algebraically. Her first steps are shown. Identify any errors in her work, and complete the correct solution.

$$
2 x=\sqrt{x+1}+4
$$

Step 1: $\quad(2 x)^{2}=(\sqrt{x+1}+4)^{2}$
Step 2: $\quad 4 x^{2}=x+1+16$
b) John decided to find the solution graphically. He entered the following equations in his calculator. Could his method lead to a correct answer? Explain.

$$
\begin{aligned}
& y=\sqrt{x+1}+4 \\
& y=2 x
\end{aligned}
$$

16. Given that $x+3$ is a factor of the polynomial $P(x)=x^{4}+3 x^{3}+c x^{2}-7 x+6$, determine the value of c. Then, factor the polynomial fully.
17. Consider $P(x)=x^{3}-7 x-6$.
a) List the possible integral zeros of $P(x)$.
b) Factor $P(x)$ fully.
c) State the x-intercepts and y-intercept of the graph of the function $P(x)$.
d) Determine the intervals where $\mathrm{P}(x) \geq 0$.
